Sunday, 2 January 2011

Wankel engine

                                                        Wankel engine


The Wankel engine is a type of internal combustion engine which uses a rotary design to convert pressure into a rotating motion instead of using reciprocating pistons. Its four-stroke cycle takes place in a space between the inside of an oval-like epitrochoid-shaped housing and a rotor that is similar in shape to a Reuleaux triangle but with sides that are somewhat flatter. This design delivers smooth high-rpm power from a compact size. Since its introduction the engine has been commonly referred to as the rotary engine, though this name is also applied to several completely different designs.
The engine was invented by German engineer Felix Wankel. He began its development in the early 1950s at NSU Motorenwerke AG (NSU) before completing a working, running prototype in 1957. NSU then licensed the concept to companies around the world, which have continued to improve the design.
Because of their compact design, Wankel rotary engines have been installed in a variety of vehicles and devices such as automobiles (including racing cars), along with aircraft, go-karts, personal water craft, chain saws, and auxiliary power units. The most extensive automotive use of the Wankel engine has been by the Japanese company Mazda.
















                                                                                           

                               History

 

In 1951, the German engineer Felix Wankel began development of the engine at NSU Motorenwerke AG, where he first conceived his rotary engine in 1954 (DKM 54, Drehkolbenmotor). The so-called KKM 57 (the Wankel rotary engine, Kreiskolbenmotor) was constructed by NSU engineer Hanns Dieter Paschke in 1957 without the knowledge of Felix Wankel, who remarked "you've turned my race horse into a plow mare". The first working prototype DKM 54 was running on February 1, 1957 at the NSU research and development department Versuchsabteilung.

Considerable effort went into designing rotary engines in the 1950s and 1960s. They were of particular interest because they were smooth and quiet running, and because of the reliability resulting from their simplicity. An early problem of buildup of crackles in the epitrochoid surface was solved by installing the spark plugs in a separate metal piece instead of screwing them directly into the block.

In the United States, in 1959 under license from NSU, Curtiss-Wright pioneered minor improvements in the basic engine design. In Britain, in the 1960s, Rolls Royce Motor Car Division at Crewe, Cheshire, pioneered a two-stage diesel version of the Wankel engine.
Also in Britain, Norton Motorcycles developed a Wankel rotary engine for motorcycles, based on the Sachs air cooled Wankel that powered the DKW/Hercules W-2000 motorbyke, which was included in their Commander and F1; Suzuki also made a production motorcycle with a Wankel engine, the RE-5, where they used ferrotic alloy apex seals and an NSU rotor in a successful attempt to prolong the engine's life. In 1971 and 1972 Arctic Cat produced snowmobiles powered by 303 cc Wankel rotary engines manufactured by Sachs in Germany. Deere & Company designed a version that was capable of using a variety of fuels. The design was proposed as the power source for United States Marine Corps combat vehicles and other equipment in the late 1980s.
After occasional use in automobiles, for instance by NSU with their Ro 80 and Citroën, using engines produced by Comotor, with their M35 and GS Birotor, the most extensive automotive use of the Wankel engine has been by Mazda. Additionally, there were abortive attempts to design Wankel-engine automobiles by General Motors, which seems to have concluded that the Wankel engine was slightly more expensive to build than an equivalent reciprocating engine, and Mercedes-Benz.

After years of development, Mazda's first Wankel engine car was the 1967 Cosmo. The company followed with a number of Wankel ("rotary" in the company's terminology) vehicles, including a bus and a pickup truck. Customers often cited the cars' smoothness of operation. However, Mazda chose a method to comply with hydrocarbon emission standards that, while less expensive to produce, increased fuel consumption, just before a sharp rise in fuel prices. Mazda later abandoned the Wankel in most of their automotive designs, but continued using it in their RX-7 sports car until August 2002 (RX-7 importation for Canada ceased with only the 1993 year being sold. The USA ended with the 1994 model year with remaining unsold stock being carried over as the '1995' year.). The company normally used two-rotor designs, but the 1991 Eunos Cosmo used a twin-turbo three-rotor engine. In 2003, Mazda introduced the RenesisRX-8. The Rene sis engine relocated the ports for exhaust and intake from the periphery of the rotary housing to the sides, allowing for larger overall ports, better airflow, and further power gains. Early Wankel engines had also side intake and exhaust ports, but the concept was abandoned because of carbon buildup in ports and side of rotor. The Rene sis engine solved the problem by using a keystone scraper side seal.The Rene sis is capable of delivering 238 hp (177 kW) with better fuel economy, reliability, and environmental friendliness than previous Mazda rotary engines, all from its 1.3 L displacement. engine with the
In 1961, the Soviet research organization of NATI, NAMI and VNIImotoprom started experimental development, and created experimental engines with different technologies.
Soviet automobile manufacturer AvtoVAZ also experimented with the use of Wankel engines in cars but without the benefit of a license. In 1974 they created a special engine design bureau, which in 1978 designed an engine designated as VAZ-311. In 1980, the company started delivering Wankel-powered VAZ-2106s (VAZ-411 engine with two-rotors) and Ladas, mostly to security services, of which about 200 were made. The next models were the VAZ-4132 and VAZ-415. Aviadvigatel, the Soviet aircraft engine design bureau, is known to have produced Wankel engines with electronic injection for aircraft and helicopters, though little specific information has surfaced.
Although many manufacturers licensed the design, and Mercedes-Benz used it for their C111American MotorsRoy D. Chapin Jr., that the smallest U.S. automaker signed an agreement in February 1973, after a year's negotiations, to build Wankels for both passenger cars and Jeeps, as well as the right to sell any rotary engines it produces to other companies.[12][13] It even designed the unique Pacer around the engine, even though by then, AMC had decided to buy the Wankel engines from GM instead of building them itself. However, GM's engines had not reached production when the Pacer was to hit the showrooms. Part of the demise of this feature was the 1973 oil crisis with rising fuel prices, and also concerns about proposed US emission standards legislation. General Motors' Wankel did not comply with those emission standards, so in 1974 the company canceled its development, although GM claimed having solved the fuel consumption problem; unfortunately, they never published the results of their research. This meant the Pacer had to be reconfigured to house AMC's venerable AMC Straight-6 engine with rear-wheel drive. concept car, only Mazda has produced Wankel engines in large numbers. (AMC) was so convinced "...that the rotary engine will play an important role as a powerplant for cars and trucks of the future...", according to Chairman

                                                      Compression Ratio












                                    

                                    Design

 

In the Wankel engine, the four strokes of a typical Otto cycle occur in the space between a three-sided symmetric rotor and the inside of a housing, although the Wankel cycle differs from Otto cycle in the duration of the expansion part of cycle, that is much longer (Columbia). In the basic single-rotor Wankel engine, the oval-like epitrochoid-shaped housing surrounds a rotor which is triangular with bow-shaped flanks (often confused with a Reuleaux triangle a three-pointed curve of constant width, but with the bulge in the middle of each side a bit more flattened). The theoretical shape of the rotor between the fixed corners is the result of a minimization of the volume of the geometric combustion chamber and a maximization of the compression ratio, respectively (Columbia). The symmetric curve connecting two arbitrary apexes of the rotor is maximized in the direction of the inner housing shape with the constraint not to touch the housing at any angle of rotation (an arc is not a solution of this optimization problem).
The central drive shaft, called the eccentric shaft or E-shaft, passes through the center of the rotor and is supported by fixed bearings. The rotors ride on eccentrics (analogous to cranks) integral with the eccentric shaft (analogous to a crankshaft). The rotors both rotate around the eccentrics and make orbital revolutionscombustion chambers(Columbia). The rotation of each rotor on its own axis is caused and controlled by a pair of synchronizing gears A fixed gear mounted on one side of the rotor housing engages a ring gear attached to the rotor and ensures the rotor moves exactly 1/3 turn for each turn of the eccentric shaft. The power output of the engine is not transmitted through the synchronizing gears The force of gas pressure on the rotor (to a first approximation) goes directly to the center of the eccentric, part of the output shaft. around the eccentric shaft. Seals at the corners of the rotor seal against the periphery of the housing, dividing it into three moving
The best way to visualize the action of the engine in the animation at left is to look not at the rotor itself, but the cavity created between it and the housing. The Wankel engine is actually a variable-volume progressing-cavity system. Thus there are 3 cavities per housing, all repeating the same cycle. Note as well that points A and B on the rotor and e-shaft turn at different speed, point B moves 3 times faster than point A, so that one full orbit of the rotor equates to 3 turns of the e-shaft.
As the rotor rotates and orbitally revolves, each side of the rotor gets closer and farther from the wall of the housing, compressing and expanding the combustion chamber similarly to the strokes of a piston in a reciprocating engine. The power vector of the combustion stage goes through the center of the offset lobe.
While a four-stroke piston engine makes one combustion stroke per cylinder for every two rotations of the crankshaft (that is, one-half power stroke per crankshaft rotation per cylinder), each combustion chamber in the Wankel generates one combustion stroke per each driveshaft rotation, i.e. one power stroke per rotor orbital revolution and three power strokes per rotor rotation. Thus, power output of a Wankel engine is generally higher than that of a four-stroke piston engine of similar engine displacement in a similar state of tune; and higher than that of a four-stroke piston engine of similar physical dimensions and weight.
Wankel engines also generally have a much higher redline than a reciprocating engine of similar power output, in part because the smoothness inherent in circular motion, but especially because they do not have highly stressed parts such as a crankshaft or connecting rods. Eccentric shafts do not have the stress-raising internal corners of crankshafts. The redline of a rotary engine is limited by wear of the synchronizing gears. Hardened steel gears are used for extended operation above 7000 or 8000 rpm. Mazda Wankel engines in auto racing are operated above 10,000 rpm. In aircraft they are used conservatively, up to 6500 or 7500 rpm. However, as gas pressure participates in seal efficiency, running a Wankel engine at high rpm under no load conditions can destroy the engine.
National agencies that tax automobiles according to displacement and regulatory bodies in automobile racing variously consider the Wankel engine to be equivalent to a four-stroke engine of 1.5 to 2 times the displacement; some racing series ban it altogether.


                                                 Engineering

 

Felix Wankel managed to overcome most of the problems that made previous rotary engines fail by developing a configuration with vane seals that could be made of more durable materials than piston ring metal that led to the failure of previous rotary designs.
Rotary engines have a thermodynamic problem not found in reciprocating four-stroke engines in that their "cylinder block" operates at steady state, with intake, compression, combustion, and exhaust occurring at fixed housing locations for all "cylinders". In contrast, reciprocating engines perform these four strokes in one chamber, so that extremes of "freezing" intake and "flaming" exhaust are averaged and shielded by a boundary layer from overheating working parts.
The boundary layer shields and the oil film act as thermal insulation, leading to a low temperature of the lubricating film (max. ~200 °C/400 °F) on a water-cooled Wankel engine. This gives a more constant surface temperature. The temperature around the spark plug is about the same as the temperature in the combustion chamber of a reciprocating engine. With circumferential or axial flow cooling, the temperature difference remains tolerable.


Four-stroke reciprocating engines are less suitable for hydrogen. The hydrogen can misfire on hot parts like the exhaust valve and spark plugs. Another problem concerns the hydrogenate attack on the lubricating film in reciprocating engines. In a Wankel engine, this problem is circumvented by using a ceramic apex seal against a ceramic surface: there is no oil film to suffer hydrogenate attack. Since ceramic piston rings are not available as of 2009, the problem remains with the reciprocating engine. The piston shell must be lubricated and cooled with oil. This substantially increases the lubricating oil consumption in a four-stroke hydrogen engine.

                                                             Materials

Unlike a piston engine, where the cylinder is cooled by the incoming charge after being heated by combustion, Wankel rotor housings are constantly heated on one side and cooled on the other, leading to high local temperatures and unequal thermal expansion. While this places high demands on the materials used, the simplicity of the Wankel makes it easier to use alternative materials like exotic alloys and ceramics. With water cooling in a radial or axial flow direction, with the hot water from the hot bow heating the cold bow, the thermal expansion remains tolerable


                                                             Sealing

 

Early engine designs had a high incidence of sealing loss, both between the rotor and the housing and also between the various pieces making up the housing. Also, in earlier model Wankel engines carbon particles could become trapped between the seal and the casing, jamming the engine and requiring a partial rebuild. It was common for very early Mazda engines to require rebuilding after 50,000 miles (80,000 km). This can be prevented in older Mazda engines by always allowing the engine to reach operating temperature. Modern Wankel engines have not had these problems for many years. Further sealing problems arise from the uneven thermal distribution within the housings causing distortion and loss of sealing and compression. This thermal distortion also causes uneven wear between the apex seal and the rotor housing, quite evident on higher mileage engines.





                                Fuel consumption and emissions

Just as the shape of the Wankel combustion chamber is resistant to preignition and will run on lower-octane rating gasoline than a comparable piston engine, it also leads to relatively incomplete combustion of the air-fuel charge, with a larger amount of unburned hydrocarbons released into the exhaust. The exhaust is, however, relatively low in NOx emissions; this allowed Mazda to meet the United States Clean Air Act of 1970 in 1973 with a simple and inexpensive 'thermal reactor' (an enlarged open chamber in the exhaust manifold) by paradoxically enriching the air-fuel ratio to the point where the unburned hydrocarbons (HC) in the exhaust would support complete combustion in the thermal reactor; while piston-engine cars required expensive catalytic converters to deal with both unburned hydrocarbons and NOx emissions. This raised fuel consumption, however, (already a weak point for the Wankel engine) at the same time that the oil crisis of 1973 raised the price of gasoline. Mazda was able to improve the fuel efficiency of the thermal reactor system by 40% by the time of introduction of the RX-7 in 1978, but eventually shifted to the catalytic converter system. According to the Curtiss-Wright research, the extreme that controls the amount of unburned HC in the exhaust is the rotor surface temperature, higher temperatures producing less HC. They showed also that the rotor can be widened. Quenching is the dominant source of HC at high speeds, and leakage at low speeds. The shape and positioning of rotor recess-combustion chamber- influences emissions and fuel use, the MDR being chosen as a compromise. (Ritsuharu Shimizu et al., SAE Paper 950454, 1995)
In Mazda's RX-8 with the Renesis engine, fuel consumption is now within normal limits while passing California State emissions requirements, including California's Low Emissions Vehicle or LEV standards. The exhaust ports, which in earlier Mazda rotaries were located in the rotor housings, were moved to the sides of the combustion chamber. This approach allowed Mazda to eliminate overlap between intake and exhaust port openings, while simultaneously increasing exhaust port area. The side port trapped the unburned fuel in the chamber decreased the oil consumption and improved the combustion stability in the low-speed and light load range. The HC emissions from the side exhaust port Wankel engine is 35 to 50 percent less than those from the peripheral exhaust port Wankel engine

                                                  Advantages



Wankel engines are considerably simpler, lighter, and contain far fewer moving parts than piston engines of equivalent power output. For instance, because valving is accomplished by simple ports cut into the walls of the rotor housing, they have no valves or complex valve trains; in addition, since the rotor rides directly on a large bearing on the output shaft, there are no connecting rods and there is no crankshaft. The elimination of reciprocating mass and the elimination of the most highly stressed and failure prone parts of piston engines gives the Wankel engine high reliability, a smoother flow of power, and a high power-to-weight ratio.
The surface/volume-ratio problem is so complex that one cannot make a direct comparison between a reciprocating piston engine and a Wankel engine in terms of the surface/volume-ratio. The flow velocity and the heat losses behave quite differently. Surface temperatures behave absolutely differently; the film of oil in the Wankel engine acts as insulation. Engines with a higher compression ratio have a worse surface/volume-ratio. The surface/volume-ratio of a Diesel engine is much worse than a gasoline engine, but Diesel engines are well known for a higher efficiency factor than gasoline engines. Thus, engines with equal power should be compared: a naturally aspirated 1.3-liter Wankel engine with a naturally aspirated 1.3-liter four-stroke reciprocating piston engine with equal power. But such a four-stroke engine is not possible and needs twice the displacement for the same power as a Wankel engine. The extra or "empty" stroke(s) should not be ignored, as a 4-stroke cylinder produces a power stroke only every other rotation of the crankshaft. In actuality, this doubles the real surface/volume-ratio for the four-stroke reciprocating piston engine and the demand of displacement. The Wankel, therefore, has higher volumetric efficiency and a lower pumping loss through the absence of choking valves.

Because of the quasi-overlap of the power strokes that cause the smoothness of the engine and the avoidance of the 4-stroke cycle in a reciprocating engine, the Wankel engine is very quick to react to throttle changes and is able to quickly deliver a surge of power when the demand arises, especially at higher rpm. This difference is more pronounced when compared to four-cylinder reciprocating engines and less pronounced when compared to higher cylinder counts.
In addition to the removal of internal reciprocating stresses by virtue of the complete removal of reciprocating internal parts typically found in a piston engine, the Wankel engine is constructed with an iron rotor within a housing made of aluminium, which has a greater coefficient of thermal expansion. This ensures that even a severely overheated Wankel engine cannot seize, as would be likely to occur in an overheated piston engine. This is a substantial safety benefit of use in aircraft. In addition, valves and valve trains that don't exist can't burn out, jam, break, or malfunction in any way, again increasing safety.
A further advantage of the Wankel engine for use in aircraft is the fact that a Wankel engine generally has a smaller frontal area than a piston engine of equivalent power, allowing a more aerodynamic nose to be designed around it. The simplicity of design and smaller size of the Wankel engine also allows for savings in construction costs, compared to piston engines of comparable power output.
Of perhaps the most importance is that Wankel engines that operate within their original design parameters are almost immune to catastrophic failure. A Wankel engine that loses compression, cooling or oil pressure will lose a large amount of power, and will die over a short period of time; however, it will usually continue to produce some power during that time. Piston engines under the same circumstances are prone to seizing or breaking parts that almost certainly results in major internal damage of the engine and an instant loss of power. For this reason, Wankel engines are very well suited to snowmobiles and aircraft, which often take users into remote places where a failure could result in frostbite or death.
Due to a 50% longer stroke duration compared to a four-cycle engine, there is more time to complete the combustion. This leads to greater suitability for direct injection. A Wankel rotary engine has stronger flows of air-fuel mixture and a longer operating cycle than a reciprocating engine, so it realizes concomitantly thorough mixing of hydrogen and air. The result is a homogeneous mixture, which is crucial for hydrogen combustion.

Popular Posts